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" ABSTRACT

This study is concerned with the stability of random systemas,
that is, systems whose internal characteristics are governed by prob-
ability laws.

Concepts of stability appropriate to random differential systems
are formulated and discussed. Precise definitions of stability are
stated and theorems interrelating these definitions are proven. Some
particular types of stability investigated are, in the mean norm, in
the ith moment, in probability, almost sure, and almost uniform-in- w.
. . Particular attention is focused on the random linear (vector) differ-
ential equation with piecewise constant parameters:

5¢=A.kx, tk-lft <t k=1, 2, ...

Two statistical structures are studied:

(a) {.4\k (tk-tk_l)} is an independent, identically distributed,
random process;
(b) {Ak(tk-tk_l)} is a finite Markov chain,

The ith moment of the solutions is obtained explicitly and is studied
with respect to asymptotic behavior, and with respect to the set struc-
ture of the Markov chain in case (b). Sufficient conditions for exponen-
tial asymptotic stability in the ith moment are derived. (In case (a),
these conditions are also necessary.) It is shown that if i is even, then
these sufficient conditions also imply almost sure asymptotic stability.

For random linear systems, it is shown that if the trivial solution
of the homogeneous equation is exponentially asymptotically stable in
the mean norm, then certain stochastic equivalents of '"bounded output
to every bounded input" are true. :

With minor modifications, all of the above results are equally
applicable to random difference equations.
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I. INTRODUCTION AND SUMMARY

1.1 General Introduction

By a random system one understands here a system some or all
of whose internal characteristics are governed by probability laws,
More precisely, it is assumed that the unforced system can be repre-
sented by an ensemble of equations indexed by the element w of a
nrobability space. Thus, for example, the system may have a repre- 1
sentation as a linear differential equation with random processes as |
coefficients, This work is concerned with the stability of systems de-
scribed by random differential or difference equations. The problems
of measurement, identification and optimization are not touched upon,

A variety of physical situations can be represented by random
differential equations. Two examples in the field of systems are:
(i) an adaptive system which compensates for effects of an external
random disturbance; and (ii) a control system whose parameters are
undergoing noise modulation. An illustration of a random parameter
is the gain of the control surface of an aircraft in flight through a
medium, possibly turbulent, of rapidly changing and incompletely
known characteristics. In the field of circuits, lumped networks con-
taining randomly varying elements can be described by random differ-
ential equations; likewise, long transmission lines with characteristics
that are nonuniform along the length of the line. 1 Finally, problems
of wave propagation and scattering in a random medium also lend them-
selves to a random differential equation representation. 2

Random difference equations arise in most of the above situations
if the coefficients of the equations are random but piecewise constant
in the independent variable, 34 They occur also in the field of quan-
tum mechanics in the study of energy levels in random lattices. > A
final example is the area of randomly sampled systems, that ia,
sampled-data systems whose sampling intervals are random vari-
ables. 6 The random sampling 'ma.y result, for instance, from



economic considerations, as in the time sharing of a digital computer
that controls several processes; from requirements of secrecy and
anti-jam protection, as in military communication systems; ffom un-
avoidable perturbations on the nominal period of a '"periodically"
sampled system. Finally, there are situations which though not
involving random sampling per se, can be fermulated in terms of a
sampler which "skips'' or fails to operate in some random manner.
Two such examples are data transmission links and scan radars,
where the received data may be rejected at some time instants be-

cause of excessive noise,
1.2 Some Previous Work on the Stability of Random Systems

For random linear systems with continuous parameter variations,
some results are available. For first-order systems Rouenbloom‘7
has expressed the output moments in terms of the characteristic func-
tien of the indefinite time integral of the parameter process; he shows
in particular that if the parameter process is stationary and Gaussian,
then for a step input the first and second output moments may become
unbounded, whereas the output approaches one in probability, as t~oe.
Tikhonov 8 has considered the first-order case where the input and
parameter processes are jointly Gaussian. The random linear differ-
ential system containing one purely random coefficient has been stud-
9 has further
developed the theory and extended it to systems containing one narrow-

ied in some detail by Samuels and Eringen. 1 Samuels

band random parameter. He has considered also linear systems with
dependent parameter processes and an independent input and has ar-
rived at specific results in some special cases, Bergenlo has also
studied the linear differential system containing only one purely ran-
dom coefficient, and has found necessary and sufficient conditions

for the mean square error to remain bounded when the system is
excited by an independent input, Za.dehu' 12 has investigated a very
general class of random linear systems admitting of a certain inte-

gral representation, and has demonstrated an integral relation
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between the output covariance, and the input and "system' covariance,
similar to that for deterministic linear systems,

Bertram and So,ra.ch.*.kl3 have extended ''Lyapunov's Second Method"
te random systems. By working with the expectation of the total time
derivative of the Lyapunov function along the system trajectories and
measuring stability in the sense of the mean norm, they have arrived
at theorems analogous to those in the deterministic case.

For discrete random linear systems (and continuous systems with ]
piecewise constant parameters), the problem consists of studying the
behavior of a given initial state vector undergoing a succession of ran-
dom linear transformations. Kalman derived the necessary and suf-
ficient conditions for mean square stability of an nth~order randomly
sampled system whose sampling intervals form a sequence of indepen-
deat, identically distributed, random variables. For the random linear
nth-order system with piecewise constant parameters:

X = Ax t _ <t<t, k=12, ..., Bergen3 has found necessary and
sufficient conditions for asymptotic stability in the second moment when
{A'k} is a deterministic sequence of the form {B,C,B,C,...} and
{t,~t, ,} is an independent, identically distributed, random sequence.
This author has investigated the asymptotic stability in the ith moment
for the case where {Ak(tk-tk_l)} is a finite Markov chain (see Chaps.
III, IV). All three above authors use the device of the Kronecker pro-
duct of matrices, firast used by Bellma.n14 in studying the asymptotic
behavior of products of independent random linear transformations.

In a recent paper on products of random matrices, Fuutehberg and
Knltenls have found gemeral conditions for the convergence of the ran-
dem sequence {n" log | X X,X ||} with {X_} a stationary sto-
chastic process with values in the set of k x k matrices, and have de-
duced the asymptotic nqrmality of 1og(xnxn_1. .. Xl), a result earlier
conjectured by Bellma.n.1
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1. 3 OQutline of Present Study

In general, the preblem of stability is to determine the extent
to which a set of properties of a system remains invariant under a
specified set of disturbances or alterations on the system, on the
initial conditions, etc. For determiaistic systems, a common sta-
bility problem im the study of deviations of the system state vector
frem a given equilibrium state ( or equivalently fram a given solutien)
when initial conditions are close to this equilibrium state; the various
stability concepts are generated by imposing requirements that the
magnitude of the deviations remain small for all time, that it returns
to sero as t-e, that it satisfies uniformity conditions with respect
to initial conditions, etc. The corresponding problem for random sys-
tems is considered here, the deviation now being measured in some
stechastic sense, e.g., in probability, aimost surely (with probabil~
ity ene), almost uniformly (-in- w), in the ith mean, etc.

In Chap. II, cencepts of stability appropriate to random differ-
ential systems are formulated and discussed. Precise definitions of
stability are givea and theorems interrelating these definitions are
proven. In the beginning of the chapter, numerous definitions of sta-
bility are stated to previde the motivation for the definitions in the
random case. Although here, and ia the remaining chapters, the sys-
tem is assumed te be a differenfial one, by making small changes it
is possible to apply the material presented to other types of systems,
e. g., to systems of random difference equations.

ChapterIll is devoted to the stability analysis of the random lin-
ear diffarential system with piecewise constant coefficients:

= Ax, t o <t<t, k=1, 2, ...,

k’
where x(t) is an n-vector and A.k is a constant n x 2 matrix. The be-
havior of the system is completely determined by the random sequence
{A'k(tk'tk-l)}' assumed in Chap . III to be an independent, ideatically
distributed, randem process. Some particular results ohtained are

-4-



the necessary and sufficient conditions for asymptotic stability in the
ith moment and sufficient conditions for almost sure asymptotic sta-
bility.

Chapter IV considers the same system as Chap.IIl except that:
{Ak(tk-tk_l)}_ is now a finite Markov chain. The results obtained are
almost identical to those of Chaplll. In fact, all the results of Chap. III
can be deduced from those of Chap.IV (and Appendix E). The indepen-
dent case is treated separately in Chap.IIl because it seems preferable
to do so from an expository point of view,

The preceding chapters have considered the unforced system. In
practice, however, it is the behavior of the system in the presence of
an input that is of interelt.""i;x\ébﬁp. V, a theorem is proven for random
linear systems which shows that, if the unforced system is exponen-
tially asymptotically stable in the mean norm, then some stochastic

equivalents of ''bounded output to every bounded input' are true.

II. STABILITY OF RANDOM SYSTEMS
Summary

Cancepts of stability ippropriate to random differential systems
are formulated and discussed. Precise definitions of stability are given
and theorems interrelating these definitions are provea. In the beginning
of the chapter numerous definitions of stability of deterministic differ-
ential systems are stated to provide the motivation for the definitions
in the random case. Although the system is assumed to be a differential
one, by making small changes it is possible to apply the material pre-
sented here to other types of systems, e. g., systems of random differ-
ence equations.

2.1 Deterministic Systems
Consider the differential equation

% = f(x, t) (2.1)

, where x is an element of the real, (normed) vector n-space Rn, and f

R
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is defined on R™X {t:t >0}. The function £ is assumed to be suffi-
ciently smooth so that solutions ef (2.1) exist and are unique for
all t > 0 for all initial values Xq = x(to'); tg > 0, and are continuous

in (xo, tO"' 3 g(t, Xq» to) will be used to designate that solution which
satisfies the initial condition g(to, Xq to) = Xq. By an abuse of notation,
x(t) alaso will be used to designate a solution but the context will be such
as to preclude any ambiguity with the variable x of the differential equa-
tion (2.1).

Without loss of generality it is assumed that £(0,t) = O for all t >0
so that x = 0 is always a solution, called the trivial solution. For, given
any solution of a differential system, it is always possible by introduc-
ing a change of variables in the differential equations to arrive at a new
differential system!® which satisfies the relation £(0, t) = 0 for all t >0.

The term stability as considered here is the study of the deviation,
from the trivial solution, of solutions cerresponding to nonzero initial
conditions,

DEFINITIONS *: The trivial solution g(t, 0, to) = 0 is called

(i) stable if given ¢ >0, to, there exists 6((,t°) > 0 such that
| xgll <& impties [ g(t, xgtg)l < € forait> tor

(ii) uniformly stable if given ¢« > 0, there exists §(¢) > 0 such
that for all t, [[xy]] < & implies || Bt xp, t)]| <¢ foratt> to:

(iii) quasi-asymptotically stable if given to. there exists
5(to) > 0 such that u xou < § implies g(t, Xq to)—ro as t —yo.

(iv) asymptotically stable if it is stable and quasi-asymptotically
stable. .

(v) guli-equiasymptdtically stable if given any‘ to, there exists
8(tg) > 0 such that | x, || <& implies g(t, Xgs tg) —>0 as t—>o0 '
uniformly on || xou < &.

FIt is understood that t _>t° >0.



(vi) equiasymptotically stable if it is stable and quasi-equia-

symptotically stable.

(vii) quasi-uniformly asymptotically stable if there exists
§ > 0 such that for all tg, l]xo | < & implies g(t, x,,t ) —> 0 as
t — o uniformly on ty > o, |l X | <.

(viii) uniformly asymptotically stable if it is uniformly stable

and quasi-uniformly asymptotically stable.
(ix) exponentially asymptotically stable if there existsa v >0,

and given any ¢ > 0, there is a corresponding 6(¢) > 0 such that for
all tg, | x,ll <& implies || g(t, xp, to)l| < exp[-v (t-t()] for an
t> to.

Implications such as the following ones are obvious:

(ii) == (i)

(vii) == (v) == (iii)

(viii) == (i) - (vii)
For other implications, examples, and discussion of the definitions, see
Antosiewicz, 17 Massera, 18 Kalman and Bertram. 19 The latter two
references also consider concepts of stability in-the-large.

If the system is linear, that is if f(x,t) is a linear in x, then (viii)
and (ix) are equivalent; in fact, for (ix) there is a constant K >1 such
that it is possible to choose §(¢) = ¢ /K so that

I g(t,xo,to)ll <K]| xq | exp[- v(t-to)] for allt >t,. See Massera. 18

Definition (i) requires that the trivial solution be stable for every

initial time to. Since the solution functions are assumed to be continu-

ous in the initial value xo it suffices to have the trivial solution stable

for some t_.; namely the trivial solution is stable if (and only if) there

some tg;
exists some number to with the property that given any € > 0 there is
a 8(¢, tg) >0 such that I X, | <& implies || g,(t,xo,to)ll <e for all

t>t See Kalman and Bertram.

0
Similarly for definition (iii), it suffices to have quasi-asymptotic
stability for some initial time to; that is in order that the trivial solu-

- tion be quasi-asymptotically stable, it suffices to have some to and a



corresponding 6(t0) > 0 such that " X " < § implies g(t, X0 to)—-—)O as
t—>o. For, given any other initial time td , consider the mapping of
the set Eo = {xo: I Xg | < 6(to) } under the solution function to the set
Eb = {xb: g(tb xo,to):ll x || < 6(t0) } . Since the solutions are unique
and continuous in the initial state, the mapping EO—) Eb is a homeomor-
phism. Further, Eb contains the point xb: 0 for this is the map of the
5 = {xb: x, < 8'} CEj for some
6§ >0, and g(to, xb ,tb) t Eo for every xb ] E6‘ » Which implies that
g(t, xb , tb )>0 as t — .

All of the above stability properties are independent of the choice of

point Xq = 0. Hence, there is a set E

the norm. For, given any two norms | - || o and -l (2) defined for
the elements x of a finite-dimensional vector space, therg exist two con-
stants klZ’ kZl’ such that (see Houéeholderzo, Na.imark3 ).

e x @ < e ® <, 2l B for anx.

2.2 Random Systems
The differential equation (2.1) now becomes
x = f(x, t; w) (2.2)

where w is a point in a probability space Q. For every fixed w, f satisfies
the'assumptions made at the beginning of the previous section on deter-
ministic systems. The time interval of definition of £, [0, ), is fixed,
i.e., does not depend on the choice of w. Also, f(0,t;w) = 0 on [0, )

XQ so that again x = 0 is always a solution.
' To every (xo, to) there corresponds the set of solutions {g(t,xo, to;w),
wsQ } with g(to, Xo» to;w) = x for all w; that is, to every (xo, to) there
corresponds a random process, namely,a family of random variables
indexed by t. The problem of stability is that of studying the probabi-
listic departure, from the trivial solution, of the class of random pro-
cesses generated when Xq is taken to be different from zero. The defi-

“nitions given in the previous section are to be modified 80 as to take



into account the dependence on w of the solution function g(t, Xo» toz ).
This dependence on w, however, will not be exhibited always by the
notation -- in most cases solutions will be designated by g(t,xo, to).
Thus from the previous definition of stable, one may obtain
DEFINITION (i-a): The trivial solution g(t, O,to) = 0 is called
stable in the n_\_e_e._x_i_lt_gﬂif givene > 0, to, there exists § (e, to) >0
such that | x,| < & implies E| a(t, x,, to)" <e forallt >t

In connection with the above definition it is useful to note that

(1) Norms such as

i/p
I, = () IxID . 21 .3

may not be desirable from the viewpoint of analysis for they involve

the operations of taking the absolute value and extracting the pth root.

However, for any scalar random variable Z, 21

1/r2

r, Uz, r,
Elz] ) " <(E|lz] 9 , 0<r <1,

Then for any fixed p > 1, it follows, by setting Z = | xil P ,

(2. 4)

r, = 1/p, and r, = 1, that

l/p)p '
EE FresYinlPesl=l

Hence, in establishing the property of stable in the’mean norm with
respect to the norm " x[] , it suffices to show that E [gil Psoe
rather than E || g|| p < ¢ as indefinition (i). The quantity | x| s

1

(] =] )P
(2. 5)

is not endowed with the homogeneity property of the norm,
| ax|| = |a] [[x]|, on which rests the invariance property:

(2) As in the deterministic case, the choice of the particular
norm is irrelevant -- the property of stability in the mean norm is
invariant under changes of the norm.

It follows from (1) and (2) that stability in the mean norm is a

consequence of mean square stability, defined as:



DEFINITION (i-bj: ¥ The trivial solution is called mean square
stable if to every e > 0, t ., there corresponds a §(¢, to) > 0 such that
[I xou < 6 implies

0'

E’ i (gi(t, X t:o))2 <e for allt> to.
i=1

KRONECKER AND POWER PRODUCTS. The theory of Kronecker
and power products of matrices is connected with the problem of sta-
bility in the mean square sense, or more generally, in the sense of the
ith moment, of linear systems. Appendix A defines the Kronecker and
the power products and states some of their properties. Stability con-
cepts based on the Kronecker and the power product are motivated and
developed in Chapsalll and IV. The brief discussion below is included
here for the sake of completeness.

The Kronecker product of the n-vector x = ( 81, Ez, ‘e En) by the
m-vector y = ( L YR nm) is the nm-vector

x @ y= (El'ﬂl. Elqzn sy Elﬂm. 52'11- Ezﬂz- ety En"lm)

having as components all possible products of a component of x by a
component of y. The Kronecker praduct of x by itself is the n-vector
x (X x and is denoted by x[ 2} The ith self-Kronecker product may

be defined by the recursive relation:
X[i]=x®in_1], i:Z, 3,.-¢
(=x[ i-1] ® x since the product is aslocia.tive). The vector x[ll iq
taken to-be identically x .
The power product of x by itself is the n(n +1) /2 vector

x(z) = (glgl’ EIEZ’ e ey Elgn' eZEZ' EZE3, L ] Ensn)

* For an nth-order scalar differential equation, the term mean
square stable is used often in the sense that the expectation of the square
of the (scalar) sqglution function remains smalt. See Refs. 9 and 10.

-10-



having as components distinct products of components of x. A higher
power X (1) is similarly defined as the vector having as components the

n+i-
i
graphic ordering is a possible ordering for the components of x

) distinct ith-order products of components of x. The lexico-

(1)

, and is

the one obtained from the Kronecker product x[ i by inspecting successive-

ly the components of x[ 1] starting with the first component and deleting
any component which is identical to any preceding component. Thus, if
x = (u, v), then x[zl = (uz,uv, vu, vz), and x(z) = (u,uv, vz).

Returning to the discussion of stability,

DEFINITION (i-c): The trivial solution is said to be gtable in the
ith moment if given any ¢ > 0, to, there exists §( ¢, to) > 0 such that
nxol < & implies|| Eg[ 1] (t, xq to)” <« for all t > to:

The above definition remains unchanged if the Kronecker product
g[ i] is replaced by the power product 3(2)‘ Such a replacement will not,
in general, alter in any significant way most of the statements made in
this report. It turns out that for theoretical analyses it is simpler to
use the Kronecker product for one is not plagued by caonsiderations of
ordering of the components of the vectors and of the matrices. Hence,
the Kronecker product will be used exclusively in the sequel. However,
when numerical computations have to be performed in a particular case,
the problem can be formulated in terms of the power product for the
smaller order of the power product vector can be of distinct computa-
tional advantage.

It is apparent from the definition of the Kronecker product and from
defimition (i-c) that stability in the ith moment requires not only that the
ith moments of the individual components of g be amall, but also that
all ith-degree cross moments of components of g be small. The value
of this latter requirement on the cross moments becomes clear in
Chapslll and IV. But it should be mentioned here that if i is even, then
the requirement on the cross moments is, in a seanse, superfluous.

This follows from the inequality

-11-
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i i, /1
ETl'lsz _<_'le'z:.|_zj3| ] (2.6)
J

z =1, 420, j=1,2 ..., n

where the Z, are scalar random variables. The inequality is a modified
form of the Holder inequality and is proven in Appendix B. Hence, for

i even, if for the vector g = (‘1, Bz oo gn), Egi is small for all j, 4

3

i i o
then so0 is E(g1 gzz ces gnn ) z ij = i. Consequeatly, definition

§=1
(i=c) of stable in the ith moment for even i remains unchanged

n
if || Egp,yll 18 replaced by E z g; . In particular, stability in the
j=1
second moment, (i-c), is equivalent to mean square stability, (i-b).
Moreover, by inequality (2.4), it follows that if i is evon then stability
in the ith moment implies stability in the jth moment for all even j <i
Hence, it also follews that stability in the ith moment for any even i
implies stability in the mean norm (irrespective of the norm). The
various properties established above can be of value in the stability
analysis of a given system where the indiviqual nature of the problem
may make it more pertinent or expedient to consider a particular type,
rather than some other type, of stability.
Unlike the three preceding definitioms, the two following definitions
do net involve any "averaging' operatioas.:

DEFINITION: The trivial solution is called

(i-d) stable in probability if givene >0, 0 >0, to, there exists
§(¢, m, tg) >0 such that | Xo | <& implies P[] git, Xy t°)|| < ]>len
for all t> t

o
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(i-e) stable almost surely if there exists an w-set S with P(5) = 1,
and given ws§ S, ¢ >0, to, there exists Sw(c . to) > 0 such that for
all ws S, leou <& , implies I g(t,xo,to;w)u <e forallt>t
that is, for almost every w, the trivial solution is stable.

03

The dependence of § onw is somewhat unsatisfactory for givent, and a

0
bound ¢ on the solutions, there is no guarantee that one can find a commeon
bound §(¢, to) on the initial values X, to insure that the norm of almost

all realizations (i. ¢., for all wbelonging to some set S with P(S) = 1)

remains within ¢. Clearly §

inf & is the largest possible §;
wsS ®

if § = 0, however, then no such § exists. In general, for the systems
considered in the following sections, 6 = 0 and this property of uniform-
ity over a set of probability 1 will not be discussed further. If, however,
it suffices to have a set of probability arbitrarily close to, but not neces-
sarily equal to, one, on which there is a uniform bound on the initial con-
ditions, then it can be shown that this is equivalent to almost sure stabi-
lity. This motivates the following:

DEFINITION (i-f): The trivial solution is called stable almost uni-
formly-in-w if givenany n>0, t

o there exists an w-set B(n, to) with
P(B) >1 - n and given any ¢ > 0, to, there corresponds a number
§(e,m,ty) > 0 such that || x°|] < § implies || g(t,xo,tosu)ll <e¢ for all

t_zt0 and all o 5B.

THEOREM 1: The trivial solution of (2. 2) is stable almost surely
if and only if it is stable almost uniformly~-in-w. (Proof: See Appendix
C.)

It is clear that (i-f) implies (i-c); hence by the preceding theorem,
(i-d) also implies (i-c).

The concept of uniform stability for deterministic systems has its
natural counterpart in stochastic systems.

DEFINITIONS (ii-a)~(ii~f): The trivial solution is said to be uni-

formly stable in the mean norm, in the mqan square, in the '1_t_h moment,

-13-
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in probability, almost surely, almost uniformly-in-w, if it satisfies
deﬁ‘niti.on‘ (i'a’)l (i"b)a (i-C),‘ (i")o (i'e)n (1'£’ reSPQCtiveIYv with &
independent of ty (and B independent of t in definition (i-f)).

The following theorem parallels Theorem 1:

THEOREM 2: The trivial solution of (2. 2) is uniformly stable al-
most surely if and only if it is uniformly stable almost uniformly-in-aw.

PROOF: The proof follows at once from the proof of Theorem 1
upon noting the uniformity in t, of B and of §.

ASYMPTOTIC CONSIDERATIONS. In the preceding section, the
definitions of stability relate to the behavior of the solution function
for all timet >t/ .
behavior of the solution functions that is of interest. Additional re-

In this section it is the large time or asymptotic

quirements of appropriate behavior for all time t > to may or may not
be imposed.

The collection of solution functions g(t, Xq» to; w) is a class, indexed
by (xo, to), of random processes. The convergence in t of the random
processes for all (x.O’tO) belonging to some set is of interest. The types
of convergence considered are those commonly studied in probability
theory, namely, in the ith mean, in probability, almost sure, and al-
most uniform (-in-w). (See Loeve. 21) From th'e usual definitions of
these modes of convergence the definitions of stability follow, attention
being paid to the dependence of the random processes on the couple
(xo, tov.

DEFINITIONS: The trivial solution is called
(iii-a) quasi-asymptotically stable in the mean norm if given to there
exists §(tg) > 0 such that || xy| < & implies E[| g(t, xy, to)[|—> 0 as
t =—>op.

(iii-b) quasi-asymptotically stable in the mean square if given to there
exists Gito) >0 such that | x,[| <& implies

E 2 (gj(t.xo,to))z—’o as t —>oo.
=1

-14-



(iii=c) quasi-asymptotically stable in the ith moment if givea t° there
exists §(ty) > 0 such that 0 x, | <& implies Eg| i](1:,::",%) —30 as

t ==> oo.

(ili-d) quasi-asymptotically stable in probability if given n > 0> ¢t
there exists §(7, to) > 0 such that given any ¢ > 0 there is

T(¢, M, x5 t,) > 0 such that | Xp | <& implies

Pl g(t,xo,to)“ <¢ ]>1-nforallt>t, + T.

(iii-e) quasi-asymptotically stable almost surely if there exists an w-set
S. with" P(S) = 1 such that for every wsS the trivial solution is quasi-
asymptotically stable; or equivalently, there exists anw-set S with

P(S) = 1 such that given ty, we S, there exists 6(w, to) > 0, and for any

« >0, there is a T( ¢, v, Xy, tg) > 0 such that | xo‘ﬂ < § implies

I gtt. Xgs tgi @) | <« foramt> to + T

(iii-f) quasi-asymptotically stable aimost uniformly-in-w if givea n > 0,t
there exists §(n,ty) > 0, and given any x,, | xoﬂ < §, there is an w-set
B(n, g, to) with P(B) >1-n such that [lxoﬂ < & implies g(t, x,, tgi w)=—>0
as t—>o uniformly on B; or equivalently, given n > 0, tD’ there exiats
&(n, tg) > 0 such that I xoﬂ < 6 implies there exists an w -set B(x, x,, t,)
with P(B) > 1-n having the property that: to.every ¢« > 0, there corre-
spands a T(¢,n, %, t0) > 0 such that [lxou < § implies || g(t, xfo,to;u)[]

<e¢ forallt>t, +T and allweB.

o’

ol

0
The discussion given at the end of definition (ii-e) is equally per-
tinent here. In defimition (iii-e) the bound on the initial value and the
number T governing the rate of convergence depend on w; in definition
(iii-f) both § and T are uniform in « but this unifermity is over an
w -set B whose probability can be chosen to be arbitrarily close to,
but mot always equal to, ene. The following two theorems complement
Theorem 1.

THEOREM 3: The trivial solution of (2.2) is quasi-asymptoti-
cally stable almost surely if it is quasi-asymptotically stable almost
unifermly-in-w  with the set B(see definition (iii-f) above) indepen-

dent of X (Preof: See Appendix C.)
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THEOREM 4: The trivial solution of (2.2) is quasi-asymptotically
stable almoat uniformly-in-wif it is quasi-asymptotically stable almost
surely. (Proof: See Appendix C.)

Clearly (iii-f) implies (iii-c), whence by Theorem 4 (iii-d) also
implies (iii-c).

The statements of the above theorems can be suitably altered to
imcorporate some requirement of uniformity of §, B, T, in the variables
X to. The proofs would parallel closely those of Theorems 1-4. Defi-
nitions (i-d)-(i-f), (ii-d)-(ii-f), (iii-d)-(iii-f) can also be modified some-
what to describe closely related concepts. For example, definitions
(i-e), (iii-e) may be altered so that the set S of unit probability depends
on the choice of to: Thus the definitions and theorems given in this sec-
tion are merely indicative of the concepts and results that can be ob-
tained. They are by no means exhaustive.

In the deterministic case, asymptotic stability requires both stabili~
ty and quasi-asymptetic stability. Likewise, in the random case, the

following definitions can be formulated:

DEFINITION: The trivial solution is called

(iv-a) asymptotically stable in the mean norm if it is (ii-a) and
(iit=a).

(iv-b) asymptotically stable in the mean square if it is (ii-b)
and (iii-b).

(iv-c) asymptotically stable in the ith moment if it is (ii-c) and
(iii-c).

(iv-d) asymptotically stable in probability if it is (ii-d) and (iii-d).

(iv-e) asymptotically stable almost surely if it is (ii-e) and (iii-e).

(iv-f) asymptotically stable almost uniformly-in- o if it is (ii-f)
and (iii-f).

It follows from their respective definitions that (iv-f) implies
(iv-d); hence by the above theorem, (iv-e) also implies (iv-b).

-16-~



The remaining concepts of stability, (v) - (ix), can be similarly
generalized to the random case. To avoid repetitiousness, they will
not be discussed here. Exponential asymptotic stability is, however,
considered briefly for it is used specifically in Chap. V.

DEFINITION: The trivial solution is called

(ix-a) exponentially asymptotically stable in the mean norm if

there exists a v > 0, and given any ¢ > 0 there is a 6(¢) > 0 such
that for all t, I X, | <e implies E || glt, X ,to)“ <e exp[-v(t-to)]
for all t > to.
(ix-c) exponentially asymptotically stable in the ith moment if there
exists a v > 0, and given any ¢ > 0 there is a §(e¢ ) > 0 such that for all
to H X, | < & implies || Eg[i](t,xo ,to)" <e exp] - v(t-t;)] for all t > ¢,
As before, (ix-c) for even i implies (ix-a). If the system is linear,
that is, if f in Eq. (2. 2) is almost surely linear in x, then (ix-a) implies
uniform asymptotic stability in the mean norm and (ix-c) implies uniform
asymptotic stability in the ith moment. Moreover, by virtue of the
linearity in x of the solution functions of the differential system, for
both {(ix-a) and ix-c) there exists a constant K > 1 such that it is possible
to choose §(¢) = ¢ /K so that E || g(t,x, ,t°)|| < K| x0|| exp [—v(t-to)] and
IIEg[ i](t,x0 itg) | <Kl Xq | exp [ - v(t-t,)] respectively.

III. LINEAR SYSTEMS WITH INDEPENDENT PARAMETERS

SUMMARY
This section is devoted to the stability analysis of the random

linear differential system with piecewise constant coefficients:

x=Akx, tk-lit<tk’ k=1 2 ... (,3.1)
where x(t) is an n-vector and Ak is a constant n x n matrix. The be-
havior of the systemn is completely determined by the random sequence

{A.k(tk-tk_l)} here assumed to be an independent, identically distri-
buted, random process. Chapter IV treats the case where {A.k(tk-tk_l)}

-17-
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is a homogeneous Markov chain. * Necessary and sufficient conditions
for stability, and (exponential) asymptotic stability, in the ith moment,
are obtained. It is shown that almost sure asyrnptotic stability is a
consequence of asymptotic stability in the ith moment, i an even integer,
and that the converse implication is false.

3.1 ith Moment Stability
Given an initial vector x(to) = X the solution of the differential
equation (3.1) in the first time interval is

A (t-ty)
x(t) = e xy t05t<t1
Defining the solution function at time t by continuity from the left,
: Al(t -t.)
1°0
x(tl) = e Xo

and taking this to be the initial value for the next time interval, the

solution in the second time interval is
e x(tl)
(t-t.) A (t.-t.)
Jath) Aty o L t<t

It follows that the time function

Ak“'tk-1)e“‘k-1(t1<-1"k-z) eAl(tl'.tO)x
« o @ 0 H]

b St<t,, k=1,2,3,...

x(t)

2

x(t) = e (3.2)

‘satisfies the initial condition x(to) = Xq and satisfies the differential

equation (3.1) everywhere except at the time instants tl, tz, t3, ce

The function x(t) defined by (3. 2) will be taken as the unique solution

of (3.1) satisfying the initial condition x(to) = x,.
Define

I L

3% (3. 3)

* All of the results of this chapter can be deduced from those of
ChaplV (and Appendix E) which treats the Markov case. It is prefer-

able, however, from an expository point of view, to treat first the
simpler case of independence.
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Then the solution (3.2) can be written as

(t-t, )
x(t) = eAk k-1 ék-1§k-2' .. §1xo (3.4)
tk_1£t<tk,k=1, 2, ...
Evaluating the solution x(t) at times ty only, (3. 4) yields
e = 8381 H%o | (3.5)
where
x(tk) = xk = ka-l (3.6)

It is clear from the definition of ﬁk' Eq. (3. 3), that the behavior of
X depends only on the probabilistic structure of the random sequence
{Ak(tk-tk_l)} . It is also clear from the comtinuity, with respect to
the initial value X of solutions of the differential equation (3.1) that '
it suffices to examine the sequence {xk} to determine the stability

(of the trivial solution) of the differential system (3.1), provided the

§ K 2T¢ boiunded in some sense. Hence it will be assumed that the

ik are bounded (almost surely) uniformly in k, i, e., there exists

a finite M such that for all k, P[] iku <M]=1.

In the remainder of this section it is assumed that {ik} is a se-
quence of independent, identically distributed, random matrices of
order n x n. Since the sequence {xk} is generated by subjecting a
given vector x, to a succession of independent, identically distributed,
random linear transformations: x, = §k§k-1' .. leo, the random
sequence {xk} is a homogeneous, nonstationary, infinite Markov
chain, (See Chap. IV, Secs. 4.1 and 4. 2.)

Take the expectation of both sides of Eq. (3.5) to obtain

Ex, = E@dy - &))%p
which by independence becomes

Exk = (Eik)(Eik-l). . (Eil)xo

-19-
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Moreover, since the §k have a common distribution,

Ex, = (E3 )%y, (3.7)

where the subscript on § has been dropped because E §jldoel
not depend on j. ' |

Equation (3. 7) shows that the behavior of Exk as a function of
k depends only on E§ (for fixed xo), in particular, only on the
location and the index of the eigenvalues of E§ . This point is
elaborated on later when it is shown that the computation of the ith
moment, i=1, 2, 3, ..., of X leads to equations identical in form
to (3. 7).

To evaluate the second moment it is necessary to work with
the squares of the components of X For algebraic simplicity assume

that the system is order (n=) 2. Let X, = (uk, vk). Then the relation
x, = ik‘k-l can be written as

- (k) (k)
Uy *11 ¢12 U1

= (k) (k)

Vi 7)) ¢22 Vi-1

which may be expressed as

= 4(k) (k)

e T 4yt 4 v
_ (k) (k)

Vie = %21 Y v %22 Vi
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Form all second-order products of components of X, to obtain

=82, rela e i oy A i* &3
Yk = (k) z(f) Uert ‘ﬂl )¢§§)“k 1"k- 1""’k) 4’(21;) Vk-1"k-1* ‘*{k) 4’95) :-l
V'~ ‘b(k) 1“k 1t 4‘;’¢§‘;’ Uk-1Vk-1* (k) (f)"k 1%k-1* ¢z(k) g) 1z<-
Vi = l;)z“lzm (k) ?flz‘)“k k-1 ‘z) (21? Vi-1"k-1* z)z 12< 1
(3.8)

Define xk[ 2] by

*k[2] ~

| 2

Then (3. 7) shows that is a linear transform of ,
*k[ 2] *k-1[2]

*x[2] © Ek[Z]xk-l[Z]' (3.9

the matrix Ik[Z] of the transformation being defined by the set of
equations (3.8). The recursion equation (3. 9) is linear, as is the
original equation (3. 6), yet it relates second-order forms of compo-
nents of X this being achieved at the cost of working in a higher
dimension. The technique used is, in fact, that of Kronecker pro-
ducts (as explained below), which dates back to the last century

(see MacDuffee, 22 pp. 81-86) and which was used recently by Bellma.n14
in solving a similar problem of computing moments.
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The matrix !k [2] in Eq. (3.9) is recognized to be the
Kronecker (or direct) product of !'k by itself:

R2) - & @3

likewise, xk[Z] is the Kronecker product of x, by itself:

2] * *x @ %

(Appendix A is a brief outline of some of the useful properties of
Kronecker and power products of matrices. )

By using the theory of Kronecker products, Eq. (3.6), valid for
systems of any order, can be easily derived. Take the self-Kromecker
product on both sides of Eq. (3.6) to obtain

x ®x = (Fx) @ Ix, (3.10)

where X, is an n-vector. Now, for any two matrices A and B, not
necessarily square but such that the product AB is defined,

AB © AB-= (AB){5) = A,1B[2] = (A @ AXB @ B) (3.11)

that is, the operations of the Kronecker product and the conventional
matrix product commute. It is this commutative property that makes
the theory of Kronecker products so applicable to the problem of
evaluating moments. For it follows from Eq. (3.11) that (3.10) can

be reduced to

*x[2] = §k[z]"1<-1[z] ’

whence by iteration on k

2] = Ep2)Fx-112] - Bip21%0[2]

-22-



Similarly, for ith-order products, form i-fold products from Eq. (3.6),
W @x @ . @x= Fx ;@ Ix 0. @ Ix
and by repeatedly using the commutative property (3. 11), obtain

i) = e Eeapsy o BipgFor) (3.12)

where the subscript [i] denotes the ith self-Kronecker product.

Now, { & [i]} is an independent, identically distributed, random
sequence of matrices (of order n ) Hence, taking the expectation in
Eq. (3.12),

Exgy) = (B i])k"o[ i] (3.13)

The vector xk[i] has as its components all ith~-order products of com-
ponents Xy hence, Eq. (3.13) gives an explicit and simple relationship
for studying the ith moment of components of X The knowledge of

the moments at time t, may be used to study the probability distribution .

of X (see Cramer,Z p. 176). Also, bounds on the probability of devi-
ation from zero of any component of x, may be evaluated readily by

using the Markov inequality21

Pl|z] >¢] < Elz|” e >0, (3.14)

r s
€
where Z is a scalar random variable and r is a positive real number.
Equation (3.13) shows that the behavior of large powers of a
matrix is of interest. Hence consider the following

LEMMA: Let F be a complex matrix of finite order. Then

(i) 1lim Fk = 0 if and only if every eigenvalue of F lies inside

k—»c0 K
the unit circle; in fact, |F “ will converge exponentially:

there exist two constants K, 2 1, ‘) > 0 such that
HFk|< K, exp[ -V k]

-23-



(ii) lim F* = F, # 0 if and only if one is an eigenvalue of F of
k=900
index* one and all other eigenvalues of F are inside the unit circle;
(iii) Fk is bounded uniformly in k but does not converge as
k=30 (is '"oscillatory'') if and only if F has no eigenvalues outside
the unit circle, all eigenvalues on the unit circle are of index one,
and there exists an eigenvalue not equal to one on the unit circle;

(iv) lim || Fk" = oo if and only if F has an eigenvalue outside the
k=)o

unit circle and/or has eigenvalues of index greater than one on the
unit circle; in fact, || Fk" will diverge exponentially: there exist
two constants l({gl y B> 0 such that || Fkll >K‘_exp[+\£k].

PROOF: To arrive at the above conclusions , it is only necessary
to transform F into a Jordan canonical form so that powers of F can
be studied readily,

THEOREM 1: The trivial solution is stable in the ith moment (A)
if and (A') only if no eigenvalue of Eg [i] lie outside the unit circle
and any eigenvalue on the unit circle has index one. It is asymptotically
stable in the ith moment (B) if and (B') only if all eigenvalues of E§[1]
lie inside the unit circle, Moreover, in (A) and (B) it is uniformly
stable in the ith moment and uniformly asymptotically stable in the
ith moment.respectively.

PROOF: (A) By the assumptions on the eigenvalues and by the
above Lemma, l:;zlp I (E§[ i] )k" < M for some finite M Given any

€ >0, choose 63:) = ¢/M. Then by Eq. (3.13),
2wy | < D EE <0 Doyl <MlIxggl - 1)

If | o[ 1] | < 6;, then I Exk[ i] | is less than €. But | o[ i] | < 5

is equivalent to || x || < & for some § > 0. Furthermore, §', and
hence 6, do not depend on to. Hence the trivial solution is uniformly
stable in the ith moment.

(A') If the eigenvalue assumption is viblated, then by part (iv)
of the above Lemma, |(E §[1 )kll—) o as k=) 00; or equivalently,
some element of the matrix (E [i]) becomes unbounded as k—>»c0.

The index of an eigenvalue is its multipligity as a root of the
minimal polynomial of F. See also Friedman, Chap. 2.

-24-



Hence there does not exilt any 6§ > 0 with the property that for some

to: “Exk[i] | = ]](Eiili * o[ 1] | remains bounded as k—yo for
all | x| < & This impliel that the trivial solution cannot be stable
in the ith moment.

(B) By part (i) of the preceding Lemma,(E!t ]) =»0 as k-»o0.
Clearly this convergence is uniform in ty Hence, given any § > 0,
it follows by Eq. (3.15) that for all t, I xou < § implies Exk[ i]—)o
as k—>co uniformly in t;, and uniformly on | x,[| < & (since the
system is linear). Hence the trivial so.ution is uniformly quasi-asymp-
totically stable in the ith moment. Moreover by (A), it is uniformly
stable in the ith moment. Therefore it is uniformly asymptotically
stable in the ith moment.

(B') If every eigenvalue of E§ is not mude the unit circle, then
by part (i) of the preceding Lemma, (E§ i]) will not converge to the
zero matrix as k—)co. Hence thére exxlts no &§ > 0 such that for some
tor Exk[ i ® (E§[ i] )kxol i]—->0 as k —>w for all | "0" < §. There-
fore the trivial solution cannot be quasi-asymptotically stable in the ith

moment and hence asymptotically stable in the ith moment.

For subsequent use,especially in Chap.V in connection with the in-
homogeneous (forced) random linear system, it is useful to establish
the property of exponential asymptotic stability:

THEOREM 2: For the random linear system (3.1), the following
propositions are equivalent:

(a) All eigenvalues of Ei[ i]n.re inside the unit circle.

(b) The trivial solution is uniformly asymptotically stable in the
ith moment.

(c) The trivial solution is exponentially asymptotically stable in

the ith moment.

PROOF: The equivalence of (a) and (b) was established in Theorem 1.

That (c) implies (b) follows at once from the definitions of exponen-

tial and uniform asymptotic stability in the ith moment.
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To show that (a) implies (c): Since all eigenvalues of Ei[i]
are inside the unit circle, by part (iv) of the Lemma there
are two constants K > 1 and v > 0 such that | (E§[ i] )k | < K exp(-vk).
Hence by Eq. (3.13),

I Exk[ i) I <kl 0[] | exp(-vk) < K, | xO” exp(-v k)

for some Kizl from which follows the desired result.
An inspection of the set of equations (3. 8) reveals that the third
equation is superfluous and leads to the condensed set of equations

2 o(k)2 (k) (k) (x)2 - 2 7
U % 29,741 b2 Uyl
w2 (el ) (h i)t ) .
2 (k)2 k), (k) (k)2 2
L id B2 2b5te 45 *22¢ )] L Vk1

which may be expressed as

*x(2) * I1<(z)"k-1(2)

The vector xk(Z) and the matrix i( 2) are recognized to be the self-
power products (see Appendix A) of X, and Ik’ respectively, As in

the Kronecker product case, for a system of any order,
k
Bxeny = ) *oq)

is the relation for the ith moment and the eigenvalues of Ei(i) deter-
mine the asymptotic behavior of the ith moment,

In theoretical analysis, the symmetrical structure of the Kronecker
product matrix is most useful; on the other hand, the smaller order of
the corresponding power product matrix can be distinctly advantageous
in reducing the numerical work. The Kronecker product will be used

exclusively hereafter.
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A central problem in the application of the above methods is the
study of the location of the eigenvalues of matrices with respect to the
unit circle. Either Schur-Cohn or transformed Routh-Hurwitz criteria

may be used (see Marden, 25 Bharucha, 28 Jurym'28

)} but paper-and-
pencil methods are tedious even for systems of low order. The prob-

lem, however, readily lends itself to solution on a digital computer .

3.2 Almost Sure Asymptotic Stability

By Eq. (3.13) and Theorem 2, if all the eigenvalues of Ei[ i] are
inside the unit circle, then the trivial solution is asymptotically stable
in the ith moment and Exk[ i] convergesmexponentially to zero. The

exponential convergence implies that Z Exk[ i] exists and is finite,

which via the Markov inequality and the Borel-Cantelli lemma shows
that kas-') 0 if i is even. Since the system is linear, this conver-

gence is uniform in Xq» from which follows

THEOREM 3: The trivial solution is equiasymptotically stable
almost surely if for some even i, all eigenvalues of EE[ i] are inside

the unit circle.
PROOF: By Eq. {(3.13)
k
Bagi) = ERap) o)

Summing on k,

z Exg) * Z (Ei[i])k"o[i] ={I- Ei[i])-l"o[ i] (3.16)
k=1 k=1

since all eigenvalues of E§[ i] have moduli less than one.

i
Let Uy be any component of X Then Euk is a component of
Q0

Exk[ i)’ and by (3.15), z Eui < . But by the Markov inequality,

k
k=1
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(3. 14),
E|u
€
1

Hence %P[ | ukl >e¢,] < for every ¢, >0, which by the Borel-Cantelli
lemma implies that u =29 0.

Therefore, given any § >0, for all t, I X, | <& implies
g(t, xo,to)——io. Moreover, since the system is linear the convergence
to zero is uniform on || xg | <6 Hence the trivial solution is quasi-
equiasymptotically stable almost surely. Also, for almost every w,
given any ¢ >0, t,, there exists a T(e, §, tgiw) > 0 such that I x, | <&
implies || g(t, Xg toi @) | <e¢ for allt> to *+ T. Now T is independent

of x,, ||'x0 | <6, and g(t, Xqs toiw ) i8 continuous in x; hence

max || g(t,x,,t ; @)]| is continuous in x,. Therefore there
t. <t<t T 0*"0 0

o="=fo*

exists a §'(¢,t ) >0, &' < §, such that I X, | < &' implies

I att, Xg» to;w)" <e for allt>ty +T (and also for t, <t< to+ T

by definition of §' and T). Consequently the trivial solution is stable
almost surely. (Thise also could have been derived by using the linear-
ity in Xq instead of using the continuity in X0 of the solution function. )
Since the trivial solution is, in addition, quasi-equiasymptotically sta-
ble almost surely, it is equiasymptotically stable aimost surely. Note
that the only reason the solution is not uniformly asymptotically stable
almost surely is that T depends on to, that is, the convergence to zero
is not necessarily uniform in to.

The converse of Theorem 3 is not true: Example 1 below shows
that the trivial solution can be almost surely quasi-asymptotically
stable although for all i, E§[ i] has eigenvalues outside the unit circle.
This is in contrast to Theorem 1 which states that asymptotic stability
in the ith moment is equivalent to having all eigenvalues of Ei[i]

inside the unit circle.
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3.3 Example 1

Lett -t

k"t = T (fixed)

Ak = b1 < 0 with probability p

Ak = b2 > 0 with probability 1-p .

Then

$i

blT
e with probability p

sz
Ik = e with probability 1-p

and

ib, T
1 . o
Ek[ i * e with probability p

isz
§k[ iy with probability 1-p.

ib T ib, T
Hence E§[i] = pe 17 + (1-p)e . By Theorem 1, the trivial solu-

tion is stable in the ith moment if and only if

It is asymptotically stable in the ith moment if the above constraint is
changed to a strict inequality. These results are exhibited graphically
in Fig. 1. Note that the region of stability increases as b,, b, decrease.
This is to be expected for bnl, b;l are the respective ''time constants"

of the stable and unstable modes of the system.
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asymp. stable

stable

unstable

Figure 1l
b.T

It is interesting to examine the situation when bl = - 00, Ek el = 0,
T 4 0, with probability p. The curve in Fig. 1 delineating the region

of stability now starts at the origin and rises exponentially to one. But
for all p>0, T >0, the trivial solution is a. s. asymptotically stable
because the only realization that dpes not become zero as t—>w is

the one where the ''stable' mode e 1 is never achieved and thus has
probability (1-p)® = 0. However, it should be noted that for any p <1,
there exists a positive probability that the trivial solution is unbounded;
for, given any bound M > 0, | x(t)|] will exceed M if the system starts

in and remains in the unstable mode for a finite length of time.

3.4 Example 2

The time intervals t, -t, , are of fixed length T. The system has
a double 'pole' at a <0 and b > 0 with probabilities p and 1-p, respec-

tively:

a T
A'k = [ ] with probability p
0

a
b T

Ak = [ ] with probability 1-p
0 b
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The corresponding values of Ik are ¢*TB and °TB where

ey

K(t) s:

Figure 2

For example, the feedback control system shown above would have
a = -1, b=1if the random gain K was equal to 4 or 0 with respective
probabilities p and 1-p.

Returning to the general case,

EZ = (pe*T + (1-p)e®T) B

B has a double eigenvalue at +1. Hence the eigenvalues of E§ are
inside the unit circle if and only if

pea‘r + (l-p)ebT <1,
that is, if and only if
bT

> ¢ -1
° e - et

in which case Exm = 0.

Again,

Ei[z] = (peZaT + (l-p)eZbT) B[z]

=3l



Note that +1 is an eigenvalue of B of multiplicity two. Hence, +1
is an eigenvalue of B [2] of multiplicity four (see Appendix A, Eq. A.5).
Moreover, it can be shown that its index is also four.

The eigenvalues of EI[ 2] are inside the unit circle if and only if

p> :w'l . (3.17)

in which case Exk[ 2]—) 0 as ke—Ppoo and the system is asymptotically
stable in the second moment. If (3.17) is changed to an equality, the
system becomes unstable in the second moment for Ei[ 2] Pow has one
as an eigenvalue of index four on the unit circle. Figure 3 summarizes
the above resuits.

P
1‘0

Asymptotically stable in the second moment: [1]
Unstable in the second moment: [2] - [5]
Ultimate mean zero: [lﬂ -[3

Ultimate mean infinite: [4] - [ 5]

Figure 3

= Suppose a = -1 and b = 0. Then this example reduces to Example
1 of Bertram and Sara.c:hik3 where by Lyapunov's second method, the
authors arrive at the result that p > 1/(l-e'T) is a sufficient condition
for asymptotic stability in the mean. But Eq. (3.17) implies that if
a<0, b= 0, a necessary and sufficient condition for asymptotic sta-
bility in the mean is p > 0. Indeed, by using the results of the next
section, it can be shown that the latter result is true even if the se-
quence {Ik} is any finite-order MarksY chain with a nonzero transi-

tion probability of going from the unstable to the stable mode.
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IV. LINEAR SYSTEM WITH MARKOV PARAMETERS

Summary

The problem considered here is identical to the one treated in
Chap.III except that the succession of modes of operation of the random
linear system forms a Markov chain rather than just an independent,
identically distributed, random sequence. The differential equation,

as before, is :

x=A,kx, tk_1<t<tk, k=1, 2, ...

where x(t) is an n-vector and A‘k is a constant n x n matrix. The system
behavior is completely described by the random sequence

{A.k(tk-tk_l)} , here assumed to be a Markov chain. Sufficient conditions
for stability, and (exponential) asymptotic stability, in the ith moment,
are obtained. It is shown that these conditions without further qualifi-
cations are not also necessary. The dependence of the ith moment of

the solution function on the initial distribution and on the types of modes
(states) of the Markov chajin is discussed. It is shown that the sufficient
conditions for asymptotic stability in the ith moment, i an even integer,

also imply almost sure asymptotic stability.
4.1 Markov Chains

This section outlines some of the pertinent facts of the theory of
Markov chains. Unfortunately there exists no standard terminology in
the literature of Markov chains; a major purpose of this section is to
introduce the notation and terminology to be used later in the section.
Some general references on Markov chains are Bharucha.-Reid,29

Doob, 30 Gantmacher, 3 and Kemeny and Snell. 32

A Markov process is an indexed set {Zt, te T (-0, o)}
of random variables such that for any integer n > 1, any set

{tl < tz <... < tn} of parameter values, and any real number a,

-33.



1=’[zt_<_a|zt boeees Zy w0 2] =P[Zt_5alzt ] (4.1)
n n-1 2 1 n n-1
If
P[th-‘lzt yoeen 2, 1= PlZ, <alz, peers Zy ]y >y,
n n-1 ) 1 n n-1 n-p
‘ (4. 2)

]
then {Zt} is called a Markov process of order p. By definition, if the

term Markov process is used without any qualifications, the order is
unity. ‘

A random process is called a discrete or a continuous parameter

*
- process according to whether the index set T is coustable or not. A
random process is called stationary if for any ti;I i=1, ..., n,
and any reala such that (t,+a )eJ, i=1, ..., n, the joint distribution

of the random variables Zt , Zt , veey Zt is independent of
1+a 2+a n+a

X for all finite n. The parameter t, sometimes, will be identified with
the physical variable time.
If the random variables Zt of a Markov process can assume values

only in some countable set D, the process is called a Markov chain;

the chain is said to be finite or infinite according as D is finite or
infinite. If D is taken to be a collection of modes * Dj' the time develop-

ment of a particular sample function of a discrete parameter Markov

chain can be thought of as an evolution through the modes Dj e D:

LI 4 » D- » Dn ] D- F] LA

i

For a discrete parameter Markov chain {Zn, n=1, 2, ...}, given
an initial mode, the time development is completely described by a

set of transition probabilities

Pyjln) = Plz_-= Djl z ,=D]

F

The standard terminology of Markov chain theory calls for the
use of the term ''state' rather than ''mode.'" The term ''state' is not
used here to prevent confusion with the state (vector) of the differential
system,
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specified for all n >1, and all D D.i e D. Of course,

i’

pij (n)> 0 and Z pij(n) =1
J

where the summation extends over all modes in D. The matrix

P(n) = (pij(n))

is called a Markov, or stochastic, or probability, or transition, matrix.
Such a matrix together with a starting distribution

a,. = P|Z, =D,
i [z, J]

completely specifies the chain. If pij is not a function of n, the chain is
called homogeneous.

Henceforth, unless explicitly indicated, the term Markov chain
will be used to denote finite homogeneous chains only.

If the elements of the kth power of the transition matrix of a Markov

chain are denoted by pi(jk) .
= (p(k)
P = el
then
(k) _ - - :
Py = Pz, = D, lzk_1 =D], k>
that is, Pi(jk) is the transition probability of going from mode D, to mode

Dj in k ateps.

If for some finite k > 1, pi(jk) > 0, then it is possible to go (i. e.,
with nonzero probability) from mode i to mode j (the modes will often
be referred to by their subscripts only), and this will be denoted by
i ~j. If there exists no finite k > 1 for which pi;k) > 0, that is, pg‘) =0
for all k > 1, then the transition from i to j cannot occur and this will

be denoted by i~ j.

-35-
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A transient set °T of modes is the set of all modes i to which
there correspond modes j such that i=>j and j#i. A nonempty' set JC
of modes is called closed if for every i 8/ and every j ¢ W i j.

If the jth row and jth column of some Markov matrix are deleted for
all j £ JC where Jlis seme closed set, the matrix remaining after
deletion is still a Markov matrix. A mode i is called absorbing if and
only if Py = 1; if a closed set contains only one mode then this must
be an absorbing mode. A closed set € of modes is called ergodic if
i—>j foralli, je&, i.e., £ is a closed set no proper subset of which
is closed. Every finite Markov chain contains at least one ergodic set;
the complement of the union of all the ergodic sets is the transient set.
If the set of all modes of a chain is ergodic, then the chain is called
er‘odic. A regular chain is an ergodic chain such that for all i, j,

pi;’ > 0 for all n > N for some N. Every ergodic set can be parti-
tioned into classes € L
tion .carries the chain from a mode in £ to a mode in Cz, from a

£, ..., £, such that every one-step transgi-
2 d

mode in Cztoamode in 63, .., from a mode in Cdtoamode in
[ r that is, the system moves cyclically through the classes ...,
€y € 3 s 4 & Z p» -++. The integer d is called the period.
If d = 1 then the ergodic set is called aperiodic; if d > 1 then the set is
called cyclic. It follows that if pg?) >0, ie€, thenn is an integer
multiple of d. It can be shown that there exists an integer b with the
property that for all i & E., p(kd) > 0 for all k > b.

ii
By a renumbering of the modes of a Markov chain, thetransition
matrix P always can be written in the form31
El 0 ces 0 0
0 E 2 v 0 0
P=]. . oo . . { 4. 3)
0 0 . Ee 0
-sl SZ e T_

-36-



El' EZ’ coey E:e are themselves Markov matrices and correspond to
the ergodic sets £ 0 é,z, cee, E‘e of the chain. The matrix T

cerresponds to the transient set. By a further reordering, any of

the Markov matrices Ek can be written as 3
0 C 2 .o 0
E = . [} L] L N ] L (40 4)
0 0 0 . C d-1
L C d 0 0 ‘e 0 ]

where pij is an element of the matrix Cn ifie Cn.

4. 2 ith Mement Stability
As in Chap. 1II, the differential system is

:'::-‘Akx, St <, k=12 ... (4. 5)
which, as shown in Eqs. (3.1) to (3.4 ), may be reduced to-

= (3 ,--8% (4.6)

In this Chaper the matrix sequence {Ik} is a Markov chain
with m possible modes 'xl, cee, Xm, an initial probability distribu-
tion {ai} on the modes, and an m x m conastant transition matrix

P= (pij):
a =P[3 = X] Py; =VP[§k=xj|Ik_1=xi]

It is required to evaluate explicitly all the moments of the output
vector process {xk} , in particular, the limiting behavior as k—yeo.
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Nowx, = §,% | =3, 3 % - Hence, ifx ,andx , are ob-
served, at say sample point w, they will delineate a subset 41 of the
range R = {xl' ceey xm} in which §k must assume its value. A
in general, is not coincident with R. Since (ik} is a first-order
Markov chain, the distribution of ik is conditioned on the subset ﬂl.
Hence {!k} is, in general, a Markov process of order > 1. More-

1.

over, the range of {xk} is countable. So finally, {xk} is a homogeneous,
nonstationary, infinite Markov chain of order > 1.
Taking the expectation in Eq. (4.6),

Exk = E(Ek. - 1) xq
which by the decivatien in Appendix D reduces teo
T k-1
Ex, = J,(Y,Q ) Y,4x, (4.7)
where Yl is the direct sum of the xi:
Y1= Xi @ ...0 xnﬁ
Ql is the square matrix of order mn:
Q1 =P @ In' In = nth-order identity matrix;
a'l is the mn x n matrix:
a, {
a’l =. ® In;
8

and fl is the n x mn matrix:

J1= [1,.... 1]

p m identities
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Equation (4. 7) gives the expected value of the sequence {xk} To obtain
the ith moment, take the ith self-Kronecker product of Eq. (4. 6) with
itself to obtain (as derived in Eqs. (3.9) - (3.12))

X141 = Bx[i] - F1[4])%0[ 4]
Hence

Exk[ i] = si(YiQi) k-lyia'ixO[ i] (4-8)
where

Yi= Xl[i] 0... e Xm[i] »

Qi=POIni .

gi = [Ini, ey Ini]

——
m identities

If the Markov chain specializes to an independent process, Eq. (4.8)
gives the results obtained in the previous chapter, as is shown in Appen-
dix E. From Eq. (4.8), by using arguments similar to those in the
previous chapter, sufficient conditions for stability and asymptotic sta-
bility, in the ith moment, can be found; that these conditions are not
necessary is demonstrated later.

THEOREM 1: (A) The trivial solution of (4. 5) is uniformly stable
in the ith moment if Y iQ;r has no eigenvalues outside the unit circle,
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and any eigenvalue on the unit circle has index one. (B) It is uniformly
asymptotically (in fact, exponentially asymptotically) stable in the ith
moment if all eigenvalues of YiQ;r lie inside the unit circle,

PROOF: (A) By the assumptions on the location and the index of
the eigenvalues, it follows from the Lemma,Chap. III, that every element
of the matrix (Y iQ;I‘)k is bounded uniformly in k. Hence ‘
| 11(YiQ;r)kY1aiH is bounded unif.or:\ly in k, i.e., there exists an
M >0 suchthat M ; ;?p I gi(Yi'Q;r) Y, Q.i" . Given any e >0, !

choose &, =¢ /M. From Eq. (4.8)

VEx (gl < 1 9u00R0 0yl gp g I <MD xgpy I (4.9)

I lle[i]" <&, , then "E"k[i]u is less than¢. But ||xo[i]ﬂ <§

is equivalent to [/ x,|| <& for some §> 0. Also §,, and hence §, do
not depend on t0 because the starting probability distribution is taken
to be independent of t Hence the trivial solution is uniformly stable
in the ith moment.
(B) Simce all eigenvalues of YiQiT have moduli 1ess than one, it

follows by the Lemma, Chap. III, that (YiQ;r)k——) 0 as k—»mw. Hence

ji(YiQ;r)kYia_i—)O as k—>. Note, moreover, that the convergence
to the zero matrix is independent of to for the Markov chain is assumed
to be homogeneous with an initial distribution that is independent of
to: Therefore, given any 6 > 0, it follows from Eq. (4.9) that for all
tor | xou < 6§ implies Exk[ 1]—’° as k—» uniformly int), and uni-

formly on || xg | <& (since the system is linear). Hence the trivial
solution is uniformly quasi-asymptotically stable in the ith moment.
Moreover by (A) it is uniformly stable in the ith moment. Therefore
it is uniformly asymptotically stable in the ith moment.

To show exponential asymptotic stability in the ith moment, take
norms in Eq. (4. 8) to obtain
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Iyl < 19,1 1 x,@l™!

and then use the fact that || (YiQ'ir) k-1 I

0 as k=». (See Theorem 2, Chap.IIlL)

I H¥al gyl

converges exponentially to

DEPENDENCE ON STRUCTURE OF MARKOV CHAIN. The stability proper-
ties of the trivial solution are independent of the ordering of the modes.
They are, however, dependent on the transient and ergodic set struc-
_ture of the chain and on the initial distribution of the modes. To demon-
strate this dependence, it will be convenient to assume that the transi-
tion matrix P of the chain is in the canonic form ( 4. 3) with the E matrices
in the form (4.4 ). In the stability study of a particular system, the
availability of P in a canonic form also facilitates the computation of

the eigenvalues of YiQ;r , and further, by exhibiting explicitly the tran-
sient and ergodic sets aids in the understanding of the problem under
consideration. In practice, of course, these advantages may be negated
partially by the labor required to reduce the given transition matrix to

a canonic form.

Suppose that P is in a canonic form. Also for algebraic convenience,

assume that there are two ergodic sets 61, &z and a transient set 'r .

Then Qi assumes the form

[E; @ L 0 0 ]
Qi= Pi @ Ini = 0 Ez ® Ini 0 {4.10)
-S1 los] Ini S2 ® Ini T@® Ini-
Let Ul’ UZ’ e, Uml, be the modes of 6 , let Vl’ VZ’ e, sz
be the modes of 52, and let Wl, WZ, cee, Wm be the modes of °T.

3
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Define

{1
(2)

Yi = Vl[i] 9...0 sz[i]
(3)

Yi = wl[i]e ® wm3[i]

Then, by definition of Yi’

e (2) o' 3
=) o v e v,

whence
T @ 14) 0 " (5] @ 1,3
v,Ql - 0 Ye] @) Ys; @ 1y
8 0 0 Y§3)(TT ® i)
i4. 11)

The structure of the matrix on the right-hand side of the above equation
shows that the eigenvalues of Y(l) (ET ® I ), of Ygz) (Eg ® Ini )

and of Y(3) (T @1 1) are the eigenvalues of Y, Qi . The computation
of the elgenva.luel of Y, Q has been reduced to the computation of the
eigenvalues of lower-order matrices.

If E is a cyclic set, some simplification in the determination of the
eigenvalues of Y(l) (E ® I i )} is possible., This is shown in Appendix
F.

If the initial distribution {ai} assigns zero probability to all modes
not in £1 (or indeed, in any closed set of modes), then the system be-
havior must be independent of the values of Py X, foralli, j ¢ 51‘.‘
For, & 1 is a closed set; hence, by the choice of the initial distribution,
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the system can never enter any mode not in 51. In the case of the
ith moment this result can be obtained algebraically by noting that if
= 0forall j£ £, then (¥,Q1) Y, @, and hence Ex, (3] Vit Eq.

(4 8), is for all k independent of Py , X, foralli, j g 8

In addition to assuming that {a } assigns zero proba.b1l1ty to all
modes not in 6 suppose further tha.t every eigenvalue of
Y‘”(ET ® I i) 13 inside the unit circle. Then the trivial solution is
asymptotxcally stable in the ith moment. But by proper choice of

2) (3 - 2T 1T
9, ¥, E,, T, the matrices ¥/(ET @ 1 ;) and YT @ 1),

and hence the matrix YiQ'ir, certainly can have eigenvalues outside the
unit circle. Hence the converse of the preceding theorem is false;
namely, for the trivial solution to be asymptotically stable in the ith
moment, it isnot necessary that all eigenvalues of YiQiT have moduli
less than unity. Likewise, if the trivial solution is stable in the ith
moment, it is not necessary that no eigenvalue of YiQ;r lie outside the
unit circle and that any eigenvalue on the unit circle have index one.
Suppose now that all eigenvalues of Y(l)(E @1 1) and
Y(3)(T - <] I i) are inside the unit circle and that the elements of the
matrices are such that for some initial distribution the trivial solu-

tion is unstable in the ith moment. (This could occur if all elements

of all the matrices VJ, i=1 ..., m, are greater than one.) By
choosing an initial distribution which a.sngns zero probability to all
modes in 52, that is, by choosing a 1+1, aml+2, ..., a m +m, = 0,

the trivial solution becomes stable, in fact, asymptotically stable, in
the ith moment. This shows that stability in the ith moment and
asymptotic stability in the ith moment depend on the choice of the ini-
tial distribution {ai}.

It is a fact that with probability one the chain remains in the tran-
sient set through only a finite number of transitions. 30 Yet stability
in the ith moment and asymptotic stability in the ith moment depend,

in general, on pij' Xi, i ¢’T. For, consider the simplest possible
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problem of studying the first moment stability of a first-order system
with one absorbing and one transient mode. The P and Y1 matrices

are assumed to be

1 0
P= , T>0 (4.12)
S T
[Xl 0 ]
Y, = X, X,>0
1 ! 1" 72
Hence
X1 XIS
v,Q -
0 XZT
and
k
T,k
(Y9 = Ly X5 ™
where hk is a function of Xl, Xz, S, and T. Using Eq. (4.8 ) to evalu-
ate Exk,

Ex, = (a,XF +a,h__ X, + a,X5T" ) x,
which clearly depends on S, T, X,, and {al, az}.

The results of the preceding four paragraphs show that if the chain
contains more than one ergodic set and possibley a transient set, then
it may be possible by changing the initial distribution on the modes to
make a stable trivial solution unstable and vice versa. Suppose now
that the chain is ergodic, that is, there is only one ergodic set and the

transient set is empty. The question arises as to whether (a) the
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convergence of divergence of Ex;, [4] with k depends on the initial dis-
tribution of modes; (b) the converse of the preceding theorem is true,
namely, is it possible to ensure stability, and asymptotic stability, in
the ith moment, by knowing the location and index of the eigenvalues of
YiQ;r, if the chain is ergodic. The second question * is not answered
here. A partial answer to the first question is given by the following
example which shows that the value of Exk[ i] for large k can depend
markedly on the initial distribution.

The example is as follows: The system is of order two, has two
maodes, and tk'tk-l = 1 for all k >1. The random matrix Ak can assume

the two values

a B
[ ], a fixed, B
-p a

Hence the two respective values of Ik

2% or «w.

exp[A.k(tk-tk_l)] are
a a
Xl = e Iz and x2 = -e 12

where In is the nth-order identity matrix. Let the transition matrix
of the chain be

1-p p
Then
e Iz 0
vl = [0 . ] P’ ® 1) (4.13)
- I2
a T a T
= (L @ LNP @ 1) = (¢"LP) ® I, (4.14)

)

The answer to the second question is in the affirmative if the
chain is regular and all elements of X. are nonnegative. This case
will be considered in more detail in aJlater report,
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where

S

Equation (4. 14) follows from (4.13) by the commutative property
(3.11) of the Kronecker product. Using this commutative property
again,

(1r1<)1T)2 = ((*LPT) @ L) («*LPT) ® 1)

= (*LPTY? @ 1, = *%(2p-1, @ 1,

It follows that

(1, QT2 - o2k zppky,
whence by Eq. (4. 8)

Epp, = e(2k+1)°'(2p-1)k(a.1-a2)x° (4.15)
Evaluating Ex,,  ina 1ike¥ashion,

Ex, = e2ke (2p-1)%, (4.16)

Hence if j is odd, Exj depends on the initial distribution {al,az}; if
j is even, it does not. Equations (4.15) and (4. 16) show that the trivial
solution is stable in the first moment if

| eWNZpT | < 1 (4.17)

(Note that + e*NZp-1 are the eigenvalues of YlQlT which checks with
the results of Theorem 1.) Equations (4.15) and (4. 16) also show that
(4.17) is, moreover, a necessary condition fow first moment stability.
Likewise, (4.17) changed to a strict inequality gives the necessary
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and sufficient condition for asymptotic stability in the ith moment,
In exactly the same fashion it can be demonstrated that the trivial

solution is stable (asymptotically stable) in the ith moment if and
only if IeIG'JZp-I | <1 (ems]Zp-l < 1),

4.3 Almost Sure Asymptotic Stability
As in the independent case, there exists the following

THEOREM 2: The trivial solution is equiasymptotically stable
almost surely if for some even i, all eigenvalues of YiQiT are inside
the unit circle. (Compare with Theorem 3, Chap.Ill. )

PROOF: The proof is virtually identical to that of Theorem 3 of

Chap. IIL
By Eq. (4.8),

T, k-1
Exe 4] = 31”191) Yiaixo[i]
Summing on k,
a0 @
o T k-1
Z Exq = 95 Z (Y9, ) 7Y, Ayxgp 4
k=1 k=1
9

because of assumption on the eigenvalyes of YiQ;r .

T,.-1
- Y.Q0) Yiaixoli]

I .
mnl i

The remainder of the proof is exactly the same as that of Theorem
3 of Chaplil.

The converse of the above theorem is false as is shown by Example
1 of Chap.lll.

4. 4 Example

Consider the same system as in Example 1 of Chap.lll but with a
Markov structure:

A‘k can assume two possible values, l:>1 <0and bz >0;t =T

k k-1
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b, T
for all k. Hence §k can assume the two possible values x1 zel
and X, = ¢ 2 . The transition diagram for the Markov chain is

1-
Pg Py
1 1%

. ; cps U .
with corresponding transition matrix

Py 1-pg
P =
1-p, Py

Since the system is of order 1, Qi = P, and

Since all entries of the matrix YiQ;r are positive, it can be shown
that a necessary and sufficient condition for the asymptotic stability
in the ith moment is that every eigenvalue of YiQ;r lies inside the unit
circle. Solving for the eigenvalues

T 2
|Y,Q" -2L| =

i i i,i
- )‘(pax1 + pux2 )+ (1 - Pg - pu)Xlx2 =0
The Schur-Cohn criterion can be used on this polynomial in \ to
obtain Figs. 4-6 which show the regions of stability in the Pg-P,
plane. The line segment labeled 'independent' in the figures is
the set of points (ps, pu) such that the Markov chain becomes an in-

dependent, identically distributed, random sequence.

-
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4.5 Some General Comments

In both Chaps.III and IV, the fact that the matrices ik'are of the
form-exp[ B] has not been made use of. Hence the resuits pertain
not only to piecewise constant differential equations but also to all
random linear difference equations X, = ikxk-l , where { §k} is an
independent, identically distributed, random process, or more gener-
ally,.a finite Markov chain.

Such difference equations arise in the study of randomly sampled.
linear systems, whose second moment stability has been investigated
by Kfa.lrna.n.6 Kalman considers the case where the successive sam-
pling intervals are independent, id;entically distributed, random
variables. This corresponds to the situation when {§,} is an inde-
pendent, identically distributed, random process. Kalman's method
consists of taking the expectation of the scalar product,

E<x, 3 >=E< §x 4, Fox >
=E<@§ ... flxd, Ik §1x0>

=E(xg 3] ... By B .o Fxg)
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which leads him to the use of power product matrices. The method
is not as straightforward as the one presented here and suffers from
the limitation that it cannot be directly extended to the study of
moments of order > 2 , and to other statistical structures such as
Markov chains.

All of the ma terial presented in this section can be extended to
the case where { §k} is a multiple-order Markov chain. This ex-

tension will be included in a later report.

V. THE FORCED LINEAR SYSTEM

Summary

For random linear systems, a theorem is proven which gives
sufficient conditions on the input and on the solutions of the unforced
system, in order that solutions of the forced system be bounded in
the mean norm. The results of the theorem are immediately appli-
cable to the piecewise constant, linear system considered in Chaps.
III and 1IV.

The preceding chapters consider the stability, with respect to
changes in initial conditions, of a fixed solution function. Hence, the
input to the system is necessarily assumed to be fixed, usually at
zero. In practice, however, it is the behavior of the system in the
presence of any input, belonging to some class of possible inputs,
that is of interest.

For deterministic linear systems a common definition of sta-
bility is: the output to every bounded input is bo;;nd;sd. Because of

’

linearity this definition of stability is equivalent to any of the
following properties of the unforced linear system: (i) the trivial

solution is uniformly asymptotically stable; (ii) the trivial solution

t
is exponentially asymptotically stable; (iii) S l W(t, 'r)u dr is

bounded in (t, to), t> t0 . to

a5]la



e ——

where W(t, ) is the fundamental matrix.
The following theorem partially generalizes some of these results
to the random case:

THEOREM 1: Consider the vector differential equation
X = A(t)x + b(t), t>0 (5.1)

where both {A(t)} and {b(t)} are random processes and sup | At)]| is
a. s. bounded. For almost every w, assume that A and b are suffi-
ciently lmooth35 so that solutions of (5.1) exist and are unique. Let
wW(t, v), t, T >0, be the fundamental matrix of the homogeneous equa-
tion (b = 0) which is normalized to W(t,t) = I, t > 0. Denote the solu.-
tion of (5.1) by gb(t, Xqs to). Now consider the following propositions
(Mi are finite positive constants independent of (t, to)):

(a) The trivial solution of the homogeneous equation is exponen-
tially asymptotically stable in the mean norm; or equivalently, there

exist two constants K, v > 0 such that

E| W(t,to)n <K exp[-v(t-to)] , t>t,.

0
t

(b) S‘ E|| wit, )] dr <M, S t>t .
to

te) ¥ wllnell <M. . and {bit)) is statistically independent of



o e

Proposition (a) states that the unforced system behaves, in the
mean norm sense, like an unforced, constant coefficient linear system
all of whose characteristic roots have negative real parts.

Propositions (c) and (c') are stochastic equivalents of the oft-
heard definition of stability for deterministic linear systems: to
every bounded input there corresponds a bounded output,

The theorem gives a partial justification for considering, in sta-
bility studies of random linear systems, the simpler unforced system
instead of the whole family of forced systems. This simplification, of
recognized value in the study of deterministic linear systems, is perhaps
of even greater value for random linear systems because of the more
complicated nature of the problem.

Before proving the theorem, consider the following

LEMMA: Proposition (b) of Theorem 1 implies that
I W(t,to)“ < M, t>t)>0.

PROOF: The proof given below follows the one given by Kalman19

for the deterministic case.
The fundamental matrix satisfies the homogeneous differential

4

equation:

g.t- Wit, v) = A(t)W(t, 7) -

Hence
F Wl m) = Wl 1 wie, 1w e, )
= -wle, v)A@WE, T )WL, )
= -wlg, v)A)
On interchanging t and 7,

=W e = -W i, 0Ad)
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from which it follows that

+ Wit,7) = -W(t, T)A(r)

since W'l(-r,t) W(t, 7). Integrate with respect to v, use the fact
that W(t,t) = I, and then take norms:

t
Wwi(t, to) -1 = S -W(t, 7)A(7)dr
t

0
t
I Wit -1l < § Iwenll 1 am ] ar
to
t
< [a.s. sup(sup | A(t}])] X | wee, o) | ar.
t>0

- 0
Now " W(t,to) || < || Wwi(t, to) - I|| + |l II] Hunce, upon taking expectations,

t
Ef wit,ty)|| <[a.s. sup (sup || A(t)]|)] E S | wit, )| dr + E|| 1|
tzO to

<[a.s. sup (sup || A(t)] )] M, + Il
t>0

Hence E|| W(t,t )| is bounded in (t, t)), t> t..

PROOF of Theorem 1: To show (a)==p (b).

t .
t .
S‘ E|| wit, 7)|| dr <X Ke ¥ (tTar < X

to 0

To show (b) = (c) . The solution of (5.1) can be expressed as

t
gb(t X ,to) =z W(t ,to)x0 + St W(t,r)b(r) dr
0
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which upon taking norms becomes
t

gyt %t | < B Wikt - =gl + St | wt, w | I te)| dr
‘ 0 (5. 2)

Since {A(t)} and {b(t)} are independent,

E| gb(t'xo'to)“ < E| wt, tO)" | X0 I
t
¢ [ Elwe i Blbn] e,

to

By the preceding Lemma, E“ Wi(t, to)" <M 6 and by hypothesis,
E| v <M,. Hence

t
E| gyt xgr to)l <Mgllxgll + M, Xt E| W(t, )| dr
0

<M, I xou + MM,
= M3(M1' “ ) " )
To show (b)==y(c'). From inequality (5. 2)
gyt %ot < I Wikt - gl

t
+ [a.s. sup( t!_)\_lg | bee) )] Sto" wi(t, 7)| ar

Therefore,

L

t
E] gyt xg to)ll <El Wit tg)l - Ixgl +M, St E| wit, )] ar
: 0

whence by the preceding Lemma, and by (b)
E| gb(t,xo,to)“ <M | xoll + MM,

= MS(MI’ " xo")
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The results of the preceding theorem are immediately applicable
to the random linear differential system considered in Chaps. III and IV.

The vector differential equation now becomes
*:Akx + b(t), tk-1-<—t<tk’k=1’ 2, ... (5. 3)

Suppose that the trivial solution of the homogeneous system is exponen-
tially asymptotically stable in the ith moment for some eveni. Then,
as shown in Chap. II, it is exponentially asymptotically stable in the
mean norm. Hence, by the theorem just proven, it follows that

If for the differential system (5. 3), the trivial solution

of the homogeneous system is exponentially asymptotically

stable in the ith moment for some even i, then

E |] gb(t, Xq to)" is bounded uniformly in (t, to) for all

bounded Xq» provided either

{b(t)} is statistically independent of
{Ak(tk-tk_l)} and E" b(t)" is bounded uniformly
in t,

or
{b(t)} is a. s. bounded.

APPENDIX A
KRONECKER AND POWER PRODUCTS OF MATRICES*

In the definitions and identities that follow, except for finiteness,
no assumptions about the dimensions of the matrices are made unless
indicated explicitly, or implied by the use of operations such as in-
verse, trace, determinant, the conventional sum A + B and product
AB, etc.

KRONECKER PRODUCTS

If Aand B are matrices of order a and B, respectively, of the

transformations

*For a concise statement of the properties of these products,
see MacDuffee, 22 Chap. VIIL
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g
j=1 j=1

the product vector (column)

L ] ] 1 v ] ] 1 | 1 L] | 1 ]
(gl nl ’ glnz | B | El npv Ez T'l 9 gz nzl”'l gzﬂpl*ﬂs Eanp) (A' 2)
is a linear transform of the corresponding unprimed product vector
(column)
(glnl ’ §1nzl A | Elnp ] Eznl Hd Ez.nz: tery Eznpi LA Ean ) (A' 3)

where the linear transformation is given by the Kronecker (or direct)

product matrix:

a,B a B ce a, B 7
aZlB a’ZZB e a5, B
A®B =
L aalB aaZB acaB_
DEFINITION: Given an a; x a, matrix A = (aij) and a ﬁl x ﬂz

matrix B = (bij), the Kronecker (or direct) product of A by B is the
0151 x azﬁz matrix

- -
auB . ala B
2
A@® B-= (aijB) £
a B Ce a B
— °’11 alnz —

The product is associative

(A®B)®C=A@ (BQ C)
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from which follows the definition of the ith self-Kronecker product:
Ar., = A . e A
[1] ® @
to i factors. It obeys the relation
AB;.y = A[.1B;. A,
[ = A1) (A-4)
In fact, the more general identity

AIBIQAZBZQ... @AiBi=(A1 ® A2 ®... QAi)(BIQ BZQ... ® Bi)
holds, from which it follows that if

then
(A® B)(xi.yi) = Axi ® BYj = )‘ixi S Pj Yj = Xip'j(xi S YJ) ’ (A. 5)

that is, if )‘i and p.j are eigenvalues of A and B, respectively, with
corresponding eigenvectors x, and yj’ then A @ B has the eigenvalue
xipj with the associjated eigenvector x, S yj

Most of the following identities are readily verified:

(a) (A+B)@C=A®C +B@C

) (A@ B)T =aT @ BT | T denotes transpose.
If A and B are matrices of orders a and B, respectively,

(c) trace (A @ B) = (trace A)(trace B)

(d) det(A @ B) = det(AP)det(B®)

(e) A B=(AQ®@I )(In ® B) , Ia. = identity matrix of order a

g
) A@ B l=a1@ B!
(8) (L, ® M,)(A® B)L, ®M,) = A & B,,

where LlALZ = Al and MIBM2 = B1
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(h) (L ®M) (A@BIL@M)=A @B,
1

-1 -
where L. "AL = Al and M "BM = B1

POWER PRODUCTS

In (A.1), let the two transformations be identical. Then the
(1/2)a(a+1) distinct products

'

'2

IR S Y S S N S

a
are related to the corresponding unprimed products by a transformation

whose matrix A, ,, is called the second power matrix of A. In symbols

(2)
x' X x' = (A x A)}x X x)

X2) = A2%2)

where x = (El, cey Ea) and x' = (E; s v E;).

The ith power product of x is similarly defined as the vector X4
having as components the (""Lil'1 ) distinct ith-degree products of
components of x, arranged in the lexicographic order. x(i) and x'(i)
are again linearly related:

W = Aa
where A(i) is the matrix of the linear transformation.

The lexicographic ordering, of the components of x, is merely a
convenient one. If some other ordering is used, the rows and columns
of A(i) will be correspondingly permuted.

The Kronecker and power products have several similar properties,

In particular, the following theorems hold:
AB,., = A, . B,
(@) AB) = Au)Pu)

If A is of order a, then

' i+a-1
(b) det A = det(Al) , j = (
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and

a+i-1
(c) A(i) has as eigenvalues the < ) products of the
i
ith degree of the eigenvalues of A.

APPENDIX B
A MODIFIED HOLDER INEQUALITY

Let Zj, j=1, 2, ..., n, be scalar random variables. Then
i i ij/i
En|zJ| < mE|z}|) (B.1)
i T !

2i.=i, i, > 0 for all j
J J

PROOF: In the case of two random variables Xl, XZ’ there exists

the well-known Holder Inequality?"l

T, 1/r1 T, 1/r2
E[XX,| <(E[X ) "(E|X,*]) . (B. 2)
1 1
—_— + — =1, r., r >0
r T, 1 2

Under the substitutions X, = v, X, = Vk. l/r1 = j/(j+k),

1/rz =1- l/r1 = k/(j+k), (B. 2) becomes

E| Ujvk| <(E| Uj+k| )j/(j+k) (E| Vj+1<| )j/(j+k) ’ (B.3)

j, k>0
2
) k1+k2_k, kl’ k2>0. Then
k

X 2
- (j+k) (j+k)
kg F 2.F ;
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note that the sum of the exponents of Z, and Zz is (j+k).

Upon substituting for V, (B.3 ) becomes

Kk 03 1;1— (j+k) ;?mk) iEo)

2 j+k +
(E|sz1 z, I) < (EIUJ |) (E|Z1 z3 |)
Now apply inequality (B.3 ) to the extreme right-hand term in the
above inequality to obtain
. kl k

j kl k2 j+k | W+ j+k) \Jtk j+k '+2E
(EIUle z, l) _<(E|uJ | (Elz{ |)J (1-::|z-‘z |)J

which can be successively generalized to (B.1).

APPENDIX C

SOME THEOREMS ON ALMOST SURE AND ALMOST UNIFORM-
IN-w TYPES OF STABILITY

Theorems 1, 3 and 4, relating almost sure and almost uniform-
in-w types of stability are proven. The proofs are modeled after those
of Egoroff's Theorem (for finite measure, convergence almost every-
where implies almost uniform convergence) and its '"converse"

(almost uniform convergence implies convergence almost everywhere). 34

THEOREM 1: The trivial solution of the differential system (2. 2)
is stable almost surely (A) if, and (B) only if, it is stable almost uni-
formly-in-w.

PROOF: (A) By hypothesis, given any positive integer n and any
to there exists an w-set Bn(to) with PB_>1 - 1/n, and given any
¢ >0, there is a corresponding 5(¢, n, t;) > 0 such that | xou <6
implies that || g(t, x,,to;w)|| <e forallt>t andall weB .

Let S = 8 Bn' . Then for everyn, S Bn and
n=1

PS > PBn >1-1/n. Hence PS = 1.
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L BT

To show that the trivial solution is stable for all realizations
corresponding to the points of S = S(to), choose any w'¢ S. Then
w'e Bk for some k = k(w') whence for any to and any e > 0,

I Xq | < s(e, k(d'),to) implies that || g(t, Xg» to;w')ll <e forallt>t,

' 1
Given any other initial time t_, S(to) can be taken to be S(to).
For, if the trivial solution of the deterministic system corresponding

1]
to weS(to) is stable at to, it is stable at td that is, given any ¢ > 0,

there is a'é(e ,t;) ,w) >0 such tha'.t || X || < 6(e ,t;) Ww )} implies

| gtt, Xgr tg w)| <e forant> to- Hence there is a set S of unit pro-
bability on which the trivial solution is stable at every to. Therefore
the trivial solution is stable almost surely.

(B) by hypothesis, there exists an w-set S of unit probability,
and to every w ¢ S, every positive integer m, and every t,, there
corresponds a p’ositive integer n (m, w, ty) such that | xg | < 1/3
implies || g(t, %o, tg;w)|| <1/m for all t >t

Given any to let

1 1
Enm(to) = Enm = {w: | X, I < a =] alt, Xg» to;w)" <<

fora.llt_>_t0},m, n=12,...

If weS, then for every m there is an nl(m, w,t.) > 0 such that
m m 0 m
w e En1 . Therefore |} E 25, whence P U E =1 Since
n n

m m m . m
E1 CEZCE3 cC..., hxx;n PE:n =1
exists a smallest integer N(m, 7, to) such that PE.. >1 - n/zm.

. N gm N
Define B = m EN . Note that B depends on 1 and to only.

and given any n > 0 there

c _ m .c m\c n _
PB_PQI(EN)S zp(EN)Sz——Zm =n.
m m

Hence PB >1 - n. Moreover, for the t; chosen above, if w' & B, then

-62-



w'e E:; for all m so that | Xq | < 1/N(m,n,t0) implies

Il s(t. x4, to;w‘)" <1/m for all m and for all t > t,. Therefore the trivial

solution is stable almost uniformly-in-w

THEOREM 3: The trivial solution of (2. 2) is quasi-asymptotically
stable almost surely if it is quas.-asymptotically stable almost uni-
formly-in- w with the set B (see definition (iii-f), Sec. II) independent
of Xq-

PROOF: By hypothesis, given any integer n > 0 and any to, there
is a &(n, to) > 0 and an w -set Bn(to) with PB_ >1 - 1/n such that
I % | <& implies that g(t, Xgs tgiw) —>0 as t—> o uniformly on B .

Let S(t ) = Lr{ B_(t,). Then for all n, S(t;) DI B (t,) and
PS(to) > PBn(to) >1 -1/n. Hence PS(ty) = 1.

Given any w ¢ S(to), w is an element of Bk(to) for some k = k(w).
Hence at t, I Xq | < 8(k(w), ty) implies g(t, X, tiw)=>0 as t—ro;

i. e., the trivial solution is quasi-asymptotically stable almost surely
at to. As in the proof of Theorem 1, S can be taken to be independent

of to. This completes the proof.

THEOREM 4: The trivial solution of (2. 2) is quasi-asymptotically
stable almost uniformly-in-w if it is quasi-asymptotically stable

almost surely.

PROOF: By hypothesis, there exists an w-set S of unit probability
and to every w & S and any given to, there corresponds a positive integer
7 (w, to) such that | N | <1/n implies g(t, Xgs tgiw) —>0 as t— oo,

Given any to, let

1
Fn(to) = Fn = {w:" xoll < E:gg(t, Xq» to;w)—>0 as t—> o},
ns= 1, z, )

Pick w e S. Then weg F'x-x( and hence w € l?’x Fn' Therefore

w, to)

UF D swhencePU F =1 Since FCF.CF, ..., lim PF_=1.
nn n n 1 3 n

2
n

Hence, given any n > 0 there is a smallest integer N(n,to) such that
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PFy >1- n/2.
For every x, I X, | <1/N, define

m m 1
Ek (xo, to) = Ek = {w:" g(t, X0 to;u)ll <= for all t > to + k}
m, k=1, 2, ...
If w 5FN, then for every m there is a kl(m, w, X to) such that

w ¢ EY . Therefore QElr:x :FN, whence P g Ekm >1-n/2.

Since E, C:EanC E;nc veea likm PE;:l >1 - n/2 and there exists a
smallest integer K(m, 1, x, to) > 0 such that lim PEkm - PE? < (n/2)/2™
k

from which it follows that PE} >1 - (n/2)(1 + 1/2™).

. m
Define B = Q EK and note that B = B(n, X0 to).

c _ m ,C m ,c S n 1,
m m
Hence PB >1 - . Moreover, if w' £ B, then «'e E;? for every m so
that || xq | <VN@, to) implies | gtt, Xgs tos @ || <1/m for all m and for
allt >ty + K(m,n, X to). Therefore the trivial solution is quasi-

asymptotically stable almost uniformly-in- o .

APPENDIX D
E(§k§ k-1""" 3 1) FOR MATRIX VALUED MARKOV CHAIN {§ k}

Given a finite Markov chain with initial probability vector
(a.l, cee, am) and anm x m constant matrix P = (Pij) of transition
probabilities, associate with each state i an n x n matrix, Xi. Let ik
be the random matrix occurring at time k, k=1, 2, .... The
expected value of the product matrix ik ik-l' .3 | is derived here.
For notational and algebraic simplicity consider a four-fold

product. Then
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m
E3,3:3%,3 = z Xy X XX121PiiPj1cPry
k,

- X, X, ( Z ijijpjk) Xap, (D.1)
ik,
Let I be the identity matrix of order n and define Q as the Kronecker
product
Q=PI

and Y as the direct sum

Y=x1®xz®... DX

m

Then

u=aTyqT (D. 2)

o1 Pyl 1% © ] Pl Pyl 7

= p121 PZZI 0 XZ plZI pZZI

PXiPy t Py XaPipt -« PpX Py + Py XpPpy ¥ on -
= | PXPr t PpaXaPip - or P X Pyt PpXoPopp bl
= [Uik] (D.3)

where Uik is the matrix entry in row i and column k. The parenthe-
sized term on the right side of Eq. (D.1) can be identified as Uki 80
that (D. 1) becomes
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E = z
$,%,%,3, Z X, ( Z XkUkika> X,a, (D.4)

By steps similar to (D. 2) through (D. 3),
Z X UkiPia = Vi
k

where

T
v = [v,] =QYU (D. 5)

Equation (D. 4) now reduces to

£$,2,3,8%, - sz Z V%3 (D. 6)
1 {

Let A be the Kronecker product of the initial probability vector with
the identity:

a,

a . o ler

a

Let W, = z vﬂixiai and let W be the matrix
i
i

W = © | =vya (D. 7)

W
m

Equation (D. 6) now becomes

£E§,3,3,3, - lewl = Jyw (D. 8)
1
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where

= (L I ..., 1
J=(,1 )

m terms

Substituting successively for W, V, U by using (D. 7), (D. 5), (D. 2)
respectively, (D. 8) reduces to

£3,3,3,3, - 9(xa")’va

which can be successively generalized to

E(F, 8, - &) = divQT ¥ lya

APPENDIX E

SPECIALIZATION OF MARKOV CASE TO INDEPENDENT CASE

In Chaplll, Sec. 3. 2, it was shown that if

5 = B T

with {I } an mdependent identically distributed, matrix sequence,

then Ex, [i] = = (Eg [1]) Xo[1] * In this appendix, this result is derived
as a special case of Eq. (4 8):

T k-
Exk[i] gi(Y Q ) Y a. xO[l]
which is the result when { §k is a Markov chain.
If { Ik} is an independent process, then the Markov matnx

has identical rows: p, =P[$ k=X ] for all k. Hence Y Q

ij = P

has the form
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(pXa) Pi*ara) R SR ST

-
Y.Q =

_pmxm[ i] mem[ i] e pmxm[ i] |

Also a, = p, whence

- .
PiXq[ 1]

Y. Q= ‘

P

mxm[ iL

Therefore,

-y

EXTOREIN

v.Qlv.a, =
11 1 1

PenXm[1]E 4]
and
5 -
Pi¥q[4] (E3 [i]’

T2
(¥,9,)"Y, 4, =

pmxm[ ij (E §[ i])z

—

and, in general,
B k-1
P Xyps] (E&[y)) ]

fr)k'lyi a

i i =

(Y.Q

P Xen 1] EE [ |

-68-



where

Egpy = 2, pyxil)

J

Equation ( 4.8) now reduces to
k
B = B Ry xop)
which is the desired result,

APPENDIX F

COMPUTATION OF X(YiQ;r) FOR CYCLIC CHAINS

Suppose that the Markov chain is ergodic; that is, there is only
one ergodic set and the transient set is empty. Suppose further that
the ergodic set is cyclic, of period d. The modes are assumed to be

suitably ordered so that the transition matrix E has the form (4. 4):

K c, o 0

0 o C, 0
E =

0 o o C4o

lcqg 0 0 o |

Hence the Y matrix has the form

= xi (d)
Y, =X"8 .. 86X

where X?) is the direct sum of the matrices X”i] corresponding

to the modes £ & ﬁj-
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T T ,
YiQi = Yi(E ® Inl)

can now be written as

= 0 0 0 Fd—
F1 0 0 0
T
YiQi = 0 FZ 0 0
. 0 0 Fd-l 0 _
where
_ i) (T -
Fj'xi (Cj ®Ini), ji=1, ..., d,

provided ngﬂ) is interpreted as X(il) .

Raising YiQiT to the dth power,

T,d
(YiQi ) = FleFd-l' .. F2 ® FZFleFd-l' - F3 ... 0 FdFd-l' - FZFI'

All of the cyclic products of the Fj's on the right-hand side of the
above equation are square, but not necessarily of the same order.
Moreover, by Lemma 1 proven below, all of the cyclic products have
the same eigenvalues, except possibly for the zero eigenvalue. Hence
the nonzero eigenvalues of YiQiT are the nonzero eigenvalues of any
of the cyclic products. Since only the nonzero eigenvalues of YiQ'ir
are of interest, a convenient way to compute them is to compute the

eigenvalues of the lowest order cyclic product.
LEMMA 1: Let Aj' j=1, ..., k, be matrices of dimension

nj x nj+1 with n =g Then all the cyclic products AIAZ' - Ak,
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AZA3. e AkAl, ceen AAL L Ak-ZAk-l have the same eigenvalues,

except possibly for the zero eigenvalue.

The proof follows from

LEMMA 2: Let Abeanr x 8 matrixandlet Bbeansxr
matrix. Assume, for convenience, that r > s. Then,

(a) AB and BA are of dimension r x r and 8 x 8 respectively;

(b) zero is an eigenvalue of AB of multiplicity at least (r-s);

(c) every eigenvalue of BA is an eigenvalue of AB.

PROOF: (a) Follows from the definition of matrix multiplication.
(b) Let N be the r x (r-s) matrix all of whose elements are zero,
Define A, B to be the matrices

X - [AN] 5 - [:T]
Then
AB = AB

BA 0
S
0 0

By inspection, zero is an eigenvalue, of multiplicity (r-s), of B A.
But the products A'B, B A have the same eigenvalues since A and B
are square matrices. Therefore, zero is an eigenvalue, of multi-
plicity (r-s), of AB (= AB), and

(c) every eigenvalue of BA is an eigenvalue of AB.
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